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ENUMERATION OF SMALL NONISOMORPHIC 
1-ROTATIONAL TWOFOLD TRIPLE SYSTEMS 

YEOW MENG CHEE AND GORDON F. ROYLE 

ABSTRACT. In this paper, twofold triple systems of order v are enumerated for 
all v < 19. 

1. INTRODUCTION 

The existence of TS(v, 2)'s (all terms are defined in ?2) is completely settled; 
the condition v _ 0 or 1 (mod 3) is known to be both necessary and sufficient 
[4]. On the other hand, enumeration efforts have not enjoyed such success. In 
fact, the exact number of pairwise nonisomorphic TS(v, 2)'s, denoted N(v), 
has been determined only for v < 10. In particular, we have N(3) = N(4) = 1 
(trivial), N(6) = 1 [5], N(7) = 4 [13], N(9) = 36 [12, 8], and N(10) = 960 
[1, 3]. One reason for the unavailability of such enumeration results for higher 
values of v is the inherent computational complexity of the problem that leads 
to a combinatorial explosion effect. To curb this combinatorial explosion, extra 
conditions are often imposed to enumerate interesting classes of designs. One 
such condition involves specifying automorphisms that the desired designs must 
possess. 

Cyclic TS(v, 2)'s, that is, TS(v, 2)'s possessing an automorphism of order 
v, have been enumerated by Colbourn [2] for v < 16. In this paper, we 
completely enumerate the class of 1-rotational TS(v, 2)'s for all v < 19. The 
existence of 1-rotational TS(v, 2)'s is determined by Kuriki and Jimbo [7], 
who proved that the necessary condition v _ 0 or 1 (mod 3) is also sufficient. 
However, they did not provide any enumeration results. The only result on the 
enumeration of 1-rotational t-(v, k, A) designs for A > 1 that we are aware 
of is that by Mathon and Rosa [9], who determined that there are precisely 85 
nonisomorphic 1-rotational 2-(15, 5, 4) designs. 

2. DEFINITIONS AND NOTATIONS 

A t-design, or more specifically t- (v, k, A) design, is a combinatorial system 
consisting of a pair (X, M) , where X is a finite set of v elements called points, 
and M is a collection of k-subsets of X called blocks, such that every t-subset 
of X is contained in precisely A blocks. We generally allow t-designs to have 
repeated blocks. A 2-(v, 3, A) design is commonly called a A-fold triple system 
of order v, and is denoted TS(v, A). 
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Two t-designs, say (X1, Mi) and (X2, M2), are said to be isomorphic if 
there exists a bijection 7r: XI -l X2 such that {xl, x2, ... , Xk} E Ml if and 
only if {ir(X1), 7r(X2), ... , 7(Xk)} IE ?2. Such a bijection is called an isomor- 
phismfrom (X1, MI) onto (X2, 2). An automorphism of a t-design (X, M) 
is an isomorphism from (X, M) onto itself. The set of all automorphisms 
of a t-design forms a group, called the full automorphism group of the design, 
under functional composition. Any subgroup of the full automorphism group 
is simply called an automorphism group. 

A t-design is called 1-rotational if it admits a permutation with one fixed 
point and a cycle of length v - 1 as an automorphism. 

3. COMPUTATIONAL DETAILS 

Let G be a group acting on a finite set X of v points. Then there is 
a natural action of G on the 2-subsets and 3-subsets of X. Let A(G) be 
a matrix with its rows and columns indexed by G-orbits of 2-subsets and 3- 
subsets of X, respectively, and define the (i, j)th entry of A(G), aij, as the 
number of 3-subsets in the G-orbit indexing column j that contain a fixed orbit 
representative of the G-orbit indexing row i. The number aij is independent 
of the choice of the orbit representative. A more general result of Kramer and 
Mesner [6] implies that a TS(v, 2) exists with G as an automorphism group 
if and only if there exists a nonnegative integral vector u satisfying the matrix 
equation A(G)u = 2j, where j is the vector of all ls. It should be clear that 
the vector u determines which orbits of 3-subsets (or blocks) are to be present 
in the TS(v, 2) in a natural way. 

Let G = (a), where a = (0)(12 ...v - 1). It follows from a previous 
discussion that if we want to construct a 1-rotational TS(v, 2) on the set of 
points X = {0, 1, ... , v - 1 }, we need only to look for a nonnegative integral 
vector u such that A(G)u = 2j . We can compute the size of the matrix A(G), 
that is, the number of orbits of 2-subsets and 3-subsets of X under the action 
of G, from the Cauchy-Frobenius-Burnside lemma: 

Lemma 1. Let G be a group acting on a finite set X, and let %(7r) be the set 
of all t-subsets of X that is invariant under the permutation 7r E G. Then the 
number of G-orbits of t-subsets of X is 

1E ZIx (lr)I1 
7rEG 

Table 1 provides information on the size of the A(G) matrices for various 
values of v. 

A branch-and-bound algorithm using depth-first search was used to find all 
nonnegative integral vectors u that satisfy A(G)u = 2j. These resulted in a 
set of distinct designs which are then subjected to further analysis to remove 
isomorphic copies. Isomorphism testing of the designs was carried out using 
nauty, the isomorphism checking algorithm of McKay [ 10, 1 1]. Let Nir(v) and 
N,*(v) denote the number of pairwise nonisomorphic 1-rotational TS(v, 2)'s 
without and with repeated blocks, respectively. A summary of the enumeration 
results we obtained is given in Table 2. 

All the pairwise nonisomorphic 1-rotational TS(v, 2)'s for v < 19 are listed 
in the Appendix to be found on the microfiche card attached to this issue. The 
blocks in each TS(v, 2) can be obtained by developing the given starter blocks 
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TABLE 1 

v size of A(G) 

6 3x 4 

7 4x 7 

9 5x 11 

10 5 x 14 

12 6x20 

13 7x25 

15 8 x 33 

16 8x38 

18 9 x 48 

19 10 x 55 

TABLE 2. Nonisomorphic TS(v, 2)'s 

V Nir(v) Nl (v) Total 

6 1 0 1 

7 1 1 2 

9 1 2 3 

10 1 0 1 

12 5 0 5 

13 8 5 13 

15 36 17 53 

16 48 5 53 

18 174 12 186 

19 366 99 465 

of each design with the permutation (0) (1 2... v - 1) . We also give the order 
of the full automorphism group of each design. 

4. TRANSITIVE AND AFFINE DESIGNS 

A TS(v, 2) (X, M) is transitive if its full automorphism group acts tran- 
sitively on the set of points X. Let X be the set of elements underlying the 
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finite field GF(v), where v is a prime power. Then a TS(v, 2) (X, A) is 
said to be affine if it admits the affine group 

{x @- +ax+bja $ O; a, b E GF(v)} 

as an automorphism group. It is not difficult to see that an affine TS(v, 2) is 
both transitive and 1-rotational. 

It appears that transitive TS(v, 2)'s are relatively rare among the 1-rotational 
TS(v, 2)'s. In all the pairwise nonisomorphic TS(v, 2)'s enumerated for v < 
19, only six transitive TS(v, 2)'s were found. These designs are a TS(6, 2) 
(design #1), a TS(7, 2) (design #1), TS(9, 2) (design #3), a TS(13, 2) (de- 
sign #2), a TS(16, 2) (design #45), and a TS(19, 2) (design #189). Further 
analysis reveals that all of these designs are actually affine designs, except for 
the TS(6, 2). It also follows that the number of pairwise nonisomorphic affine 
TS(v, 2)'s is precisely one for each v E {7, 9, 13, 16, 19}. We note that the 
affine TS(7, 2), TS(9, 2), TS(13, 2), and TS(16, 2) must have been known 
to Colbourn [2] too, since every affine TS(v, 2) is also cyclic. 
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